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couches minces, Université de Montŕeal, CP 6128, Succ. Centre-ville, Montréal, Qúebec,
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Abstract. Frustration is introduced in randomly connected totalistic cellular automata via
mixing rules leading to incompatible periods. As the respective concentration of rules is varied,
these cellular automata go through eight phases, many of which with symmetries different from
the two rules mixed in. The complex phase diagram so created is similar to those seen in
frustrated systems in static equilibrium. It shows that a minimized free energy is not necessary
for frustration to produce this rich behaviour.

1. Introduction

The classification and understanding of temporally varying systems remain a fundamental
question related to both biological and physical problems. Lacking most of the analytical
and conceptual arsenal developed for equilibrium statistical mechanics, much remains to be
done in this field despite considerable efforts from the community. Thus, in order to develop
a good understanding of dynamical problems old concepts must be checked carefully for
validity and generality and, in case of failure, new ones need to be introduced.

Of particular interest among useful concepts in equilibrium statistical physics is the
question of frustration [1]. Competition between opposite forces is known to lead, in ordered
systems, to very complex behaviour, as in the case of the axial next-nearest-neighbour Ising
(ANNNI) model. In this model, which was proposed to explain measurements in modulated
magnetic materials [2], the competition between ferromagnetic and antiferromagnetic
interactions induces infinitely many ordered phases forming a so-called quasi-devil’s
staircase (see, for example, [3]). On the other hand, frustration can cause an important
slow down in the relaxation of disordered systems, often preventing them from attaining the
equilibrium state they are driven to. This effect has been studied in detail in spin glasses,
see for example [4]. Although out of equilibrium, spin glasses are ultimately controlled
by their drive to reach a minimum in the free energy. This concept is fundamental for the
understanding of frustration in equilibrium statistical mechanics but is generally missing in
dynamical systems. So, although one could expect frustration to play an important role
in dynamical systems, this lack of a minimization principle could render any phenomenon
engendered by such perturbation trivial.

This question has already been studied in a modified ANNNI model with detailed
balance removed by the introduction of asymmetric interactions (Jij 6= Jji) [5, 6]. Although
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the location of the phases shifts slightly as a function of the level of asymmetry, the
phase diagram is qualitatively preserved. The complexity under frustration existing in the
equilibrium limit is thus preserved even when a system is pushed out of equilibrium. But
what about dynamical systems for which an equilibrium limit does not exist?

The Chat́e and Manneville cellular automata (CM-CA), which were introduced a few
years ago [7], represent an appropriate toy model for addressing this question. For a sub-
class of the CM rules, these CA present non-trivial macroscopic behaviour such as periodic
oscillation with either an integer (periodic) or irrational (quasi-periodic) frequency in units
of the integer timesteps inherent to cellular automata. While displaying a macroscopic
organization, these CA, started in a random configuration, continue to display stochasticity
at the local level.

Hemmingsson and Peng [8] were the first to study frustration using a set of CM-CA rules.
Distributing two very close rules—one with a period of three (P3) and another quasi-periodic
with a period close to three (QP3)—at random on a four-dimensional hypercubic lattice
they found a single phase change as they varied the proportion of each rule. This change
displayed properties assimilated to a second-order phase transition: finite-size scaling, a
power-law change of the order parameter and reversibility.

One can obtain a richer behaviour by mixing rules with more incompatible periods.
By using a quasi-periodic rule with a period close to three (QP3) and a periodic rule with
period of two (P2), I found two phase transitions as a function of the concentration of the
respective rules [9]. One of them was of second order and the other one, with hysteresis,
clearly first order. Besides the phases QP3 and P2, a third phase was found between the
two transition lines. Without any macroscopic time structure, the CA in this central phase
shows a stretched exponential decay in the autocorrelation functions, signature of a glassy
phase. Dynamical systems, for which no equivalent to the free energy exists, can thus be
induced by frustration into a glassy phase superimposed on their fundamental dynamics (in
the case of CA, at least).

However, the question as to whether one can induce a complex phase diagram with
numerous transitions in dynamical systems just by changing the amount of frustration—as
is seen in the ANNNI model—remains. We know that this is possible for systems with an
equilibrium limit but we cannot say anything for those where this limit does not exist. In
this paper, I show that by simply varying the amount of frustration in a dynamical model
one can indeed induce a large number of non-trivial phase changes. The specific phases
found here are of no particular importance, but the existence of such a system may open
the door to a search for more interesting objects displaying similar properties.

The study of frustration presented here is similar to the one mentioned previously in [9]
except that it has been performed on a randomly connected lattice instead of a hypercubic
one. A more detailed study of the general effects of random connections was presented
elsewhere [10]. It was found that the macroscopic behaviour associated with the CM-CA
persists even in this case. Showing a more complex behaviour on randomly connected
lattices than on regular lattices, these results underline the highly non-mean-field behaviour
of the CM-CA rules.

Since their introduction, the CM-CA have been extensively studied on finite-dimensional
lattices but they remain imperfectly understood (see, for example, [7, 9, 11–13]). Each node,
si(t), of the CM-CA can take one of two states, 0 or 1. As they are updated synchronously,
i.e. with a parallel dynamics, the state of a node at timet depends only upon the state of its
neighbours and itself at timet−1. Moreover, in this work, the rules are fully deterministic.
The update rules are totalistic with an interaction limited, in the case of random lattices, to
a finite and constant set of neighbours. When the sum over the states of a sitei and its
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neighbours falls in a bracket given by [Smin, Smax], the stateSi is updated to 1, otherwise it
is simply put to 0. This can be rewritten as follows:

si(t + 1) =


1 if Smin 6 si(t)+
∑
j∈Ni

sj (t) 6 Smax

0 otherwise
(1)

whereNi is the neighbourhood of sitei, chosen at random. Following [7],RCSmin−Smax

identifies the rule used, withC the connectivity of the randomly connected lattice andSmin

andSmax defined as above. The macroscopic quantity focused on is mainly the concentration
of sites in state 1, called magnetization,m(t) = 1/N

∑
i si(t), in analogy with spin systems.

Connectivity tables were prepared as in [10]. Sites are connected at random with three
restrictions: (1) no two-membered rings are allowed; (2) all sites have the same number
of neighbours; (3) and all bonds are taken to be symmetric. The first two restrictions are
there to insure a better defined lattice, the last one is necessary in order to obtain non-trivial
behaviour.

Results presented here are for a single pair of rules:R10
5−8 andR10

1−9. These rules
are the same as those used in [9] on a hypercubic lattice in order to allow for some
comparison. Individually, these rules do behave in a similar way to those on the five-
dimensional hypercubic lattice.R10

5−8 shows an oscillation with a period of six (P6) but
almost quasi-periodic (QP3).R10

1−9 on a random lattice also oscillates with a period of two
but trivially, at the local level (LP2), in contrast to what happens on the hypercubic lattice.
(The exact properties of the cycle for locally periodic rules depend on the initial conditions,
however the qualitative behaviour remains rather constant.) Simulation results presented
in this paper were obtained on a 1000 000 site lattice with a coordination of 10. Lattices
were initialized at random with a macroscopic magnetizationm(0) = 0.50. The first 500
timesteps were rejected and averages were taken over the next 1000 timesteps. Transient
times in these CA are very short, typically 10–50 timesteps. The same behaviour is obtained
with a smaller lattice or different initial conditions: results are fully reproducible.

Frustration is introduced here by mixing the two rules at the local level, i.e. assigning
R10

5−8 orR10
1−9 as each node rule with a given probability. In equilibrium statistical physics,

frustration can be understood as an introduction of competing interactions preventing local
states, spins, for example, to orient themselves in such a way as to minimize all those
interactions at once. A global minimization of the free energy can therefore involve the
introduction of highly strained local states. Here, although no energy nor free energy
function exists, we do the same: each site follows a rule favouring a given periodicity
but its neighbourhood, following another rule, may push for a different periodic behaviour.
Frustration here is therefore dynamical. At a given time, all sites strictly follow their rule
but only the competition between different cycles appears; in some sites the periodic motion
they require is not reinforced, forcing them to adopt a different cycle, while others will be
able to dominate.

Figure 1 presents different phases as seen from a Poincaré map of the magnetization as a
function of the concentration of ruleR10

1−9 (p(LP2)) in the model. As the concentration of this
rule is increased, the CA move through eight phases: P6, QP3, P1, P3, P1, P2, P2×QP3,
and LP2. (As will be discussed below, the cycles at p(LP2) = 0.0 and p(LP2) = 0.05
belong to the same P6 phase.) Since we still lack any theory for the behaviour of even the
unfrustrated CM-CA, no satisfactory analytical description of this phenomenon is available.
It is possible, however, to characterize what is seen here a little more. Since we are
interested in the temporal oscillations, a natural way to study these phases is by looking
at the frequency spectrum of the magnetization time series. This quantity allows a direct
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Figure 1. Poincaŕe maps for the macroscopic magnetization at different concentrations of rule
LP2. These runs were performed on a lattice with 1000 000 sites and followed on 1000 steps
after rejection of a 500-timestep transient.

measure of the symmetries associated with each phase allowing a more definite distinction
between them. Figure 2 displays the frequency spectrum associated with each of the cycles
of figure 1. By symmetry only frequencies up to12 need to be shown, and the total
densityP(f ) is normalized to 1. Here again, striking changes happen in the spectrum as
the concentration p(LP2) is varied. We can also see, as mentioned earlier, that the cycles
p(LP2) = 0.0 and p(LP2) = 0.05 possess the same symmetries (figure 3). Similarly, a more
detailed comparison of the frequency spectra for p(LP2) = 0.10 and p(LP2) = 0.17 shows
that they are qualitatively different (figure 4). We can also note the frequency spectrum of
phase P2×QP3 (p(LP2) = 0.89) which clearly shows the dominant period of two as well
as a contribution coming from a quasi-periodic cycle and which differs completely from the
two adjacent spectra (figure 2).

All those phases are reproducible although the phase diagram is not precisely known.
For example, the limits of phase P3 as well as the transition from P2×QP3 to LP2 are not
clearly defined; they fluctuate as a function of the initial conditions. All these transitions
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Figure 2. Frequency spectrum of magnetization time series of the previous figure. The density
P(f ) was normalized to one and the ordinates set so as to focus on the structures. In many
cases, the main peak goes up toP(f ) = 0.2 or more.

exist nevertheless, without a doubt, as has been checked on different size lattices and
multiple realizations.

It is helpful to plot a few quantities related to the macroscopic magnetization in order to
get a slightly more precise idea of the phase diagram. Figure 5 plots three such quantities:
the magnetization (recentred atm = 0.5), the fluctuations in the size of the cycle and the
average frequency of the macroscopic oscillations. These three quantities show essentially
the same structure and one can identify rapidly at least seven phases from the top two
curves. In the average frequency plot, an eighth phase appears between p(LP2) = 0.83 and
0.89. Taking a closer look, this phase is also seen in the top two curves but only by a slight
change of slope at p(LP2) = 0.83. The average frequency clearly appears more sensitive to
changes than direct averages over the magnetization time series as one would expect since
it connects more closely with the symmetries of the phases.

These results can be compared with previous studies of frustration discussed above
which showed (a) a single phase transition [8] or (b) two phase transitions framing a glassy
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Figure 3. Comparison of the frequency spectrum for the magnetization time series for
p(LP2) = 0.00 (full curve) and p(LP2) = 0.05 (broken curve). Same data as in figure 2.

Figure 4. Comparison of the frequency spectrum for the magnetization time series for
p(LP2) = 0.10 (full curve) and p(LP2) = 0.17 (broken curve). Same data as in figure 2.

region with stretched-exponential relaxation [9]. With many periods and cycles appearing,
some of which displaying a richer behaviour than the pure rules, the phase diagram of
the frustrated randomly connect CA is much more dramatic than these previous results.
Moreover, this complexity appears in a system which should,a priori, be simpler than the
one studied in [9] since it is described uniquely by the coordination number.

A similar study has been performed on other CM-CA rules, with different coordinations,
and qualitatively similar results were found. This is therefore not a singular behaviour but
it appears to be generic for these types of rules and possibly for any CA which would
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Figure 5. Variation of some averaged quantities with respect to the concentration of rule
LP2 on the random lattice. Top: average fluctuations of the magnetization; middle: average
magnetization; bottom: average frequencies of the Fourier spectrum, related to the size of the
cycle. The structure between 0.90 and 1.0 in the lower graph is due to the local periodicity of
these phases. Same parameters as in figure 1.

show similar robustness to perturbations such as the Hemmingsson rules, of which the
Chat́e–Manneville rules are a subset [11].

The existence of this complex phase diagram induced by a varying frustration suggests
the following comments.

(1) Because of their discreteness, states of CA cannot be altered smoothly. It is therefore
usually impossible to follow phases as one changes the discrete rules. By using rule mixing,
one can go around the discreteness inherent to CA and follow continuously the changes in
rules. Such a technique could help us to improve our understanding of some of the properties
of these models.

(2) What is the role of the lattice in this problem? For rules on hypercubic lattices
a single new phase, with glassy dynamics, was found. No such rich series of frustration-
induced phases as for the randomly connected lattice was discovered. The more complex
behaviour of a simpler lattice is rather puzzling and goes against what one would have
expected. This question ties in with naturally occurring randomly connected networks
such as the neurons and the general non-mean-field behaviour of these highly coordinated
CA.

(3) The fact that frustration can induce new phases which are different from the ones
of the pure rules in completely dynamical systems (by opposition to the results seen in the
modified ANNNI case) underlines one possible source of richness in some systems around
us. As previously mentioned, frustration is a very common occurrence in nature, especially
in the biological context where one can often find many mechanisms competing with each
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other. It could be interesting to see if some phenomena could gain from being analysed
along these lines.

In conclusion, I have presented results regarding the effects of frustration in totalistic
cellular automata based on a randomly connected infinite-dimensional network. As one
varies the respective concentration of the different rules, one finds a series of up to eight
different dynamical phases. This is much higher than what was previously found on a
hypercubic lattice. It shows that frustration can act as a generator for new phases in
dynamical systems, something which was known in the case of equilibrium systems, e.g.
the ANNNI model, but still a matter of debate for dynamical ones. The question is now to
understand how frustration can play these roles as it is no longer possible to use the familiar
concept of free energy minimization to explain what happens.

Finally, this puts a new impetus on the need to find an analytical solution to the Chaté
and Manneville cellular automaton in order to improve the understanding of the unusual
behaviour of these frustrated models as new techniques become available [14].
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